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AFIT/GA/ENY/07-M02 
 

Abstract 
 
 
Satellite formations, otherwise known in the space community as satellite clusters 

or distributed satellite systems, have been studied extensively over the last 10 to 15 years.  

For use in remote sensing applications, formations consisting of smaller, simpler 

satellites provide numerous advantages over individual satellites.  The image resolution 

capabilities of small-satellite formations constitute a significant technological leap in the 

ability to synthesize critical information. 

This research utilizes the nonlinear satellite dynamics, including gravitational 

perturbations, to search for the optimal fuel cost for maintaining a circular formation.  

The system dynamics were developed in an earth-centered inertial coordinate frame using 

the methods of Hamiltonian dynamics.  Continuous dynamic optimization theory was 

used to minimize fuel requirements, resulting in a continuous thrust, open-loop control 

law.  The uncontrolled reference trajectory off which the formation is based was 

restricted to a circular, inclined orbit. 

Given initial conditions which match the mean motion of every member of the 

formation, it is shown that 1-km circular formation configurations can be maintained for 

control costs on the order of 40-50 m/s/year at an altitude of 400 km.  Additionally, 

further fuel savings are possible with modifications to orbit altitude, formation radius, 

and variations in the defined performance index. 
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OPTIMAL CONTROL OF A CIRCULAR SATELLITE 
FORMATION SUBJECT TO GRAVITATIONAL PERTURBATIONS 

 
 
 

I.  Introduction 
 

Background 

The study of satellite formations, otherwise known in the space community as 

satellite clusters or distributed satellite systems, has exploded over the last 10 to 15 years.  

For use in remote sensing applications, formations consisting of smaller, simpler 

satellites provide numerous advantages over their traditional counterpart, the bulky 

individual satellite.  The image resolution capabilities of small-satellite formations 

constitute a significant technological leap in the ability to synthesize critical information. 

 Miller and Sedwick perform a thorough analysis of the various advantages 

achieved through the utilization of spacecraft formations (14:1-6).  For example, 

employing smaller, simpler satellites will reduce the production and launch costs of 

putting vital assets in space.  The need for multiple satellites that perform similar 

functions will also lead to mass production of these satellites, further reducing production 

costs.  In addition to reducing costs, having multiple satellites performing the same 

mission provides redundancy, a luxury not often associated with space missions.  The 

dropout or failure of one of the satellites within a cluster no longer signifies the end of the 

mission, as the remaining satellites within the formation can be reconfigured to 

compensate for the lost satellite.  Finally, satellite formations provide an improvement to 

ground imaging applications as a direct result of the sparse aperture they create.  In a 
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current ground-observing satellite, the resolution capabilities are restricted by the size of 

the mirror installed on the sensor.  Satellite formations introduce sparse apertures whose 

data can be synthesized, resulting in much higher image resolutions.  Miller and Sedwick 

go into further detail explaining these and many other advantages achieved with satellite 

formations. 

Despite all the advantages satellite formations possess over individual satellites, 

the one disadvantage that has hindered the use of satellite formations is the excessive fuel 

requirements that go into maintaining the formation.  The use of smaller satellites also 

leads to less capacity for formation-keeping fuel reserves. Until it is shown that 

formation-keeping fuel expenditures can be dramatically reduced through more efficient 

control techniques, individual satellites that can conduct the mission without the need for 

these fuel expenditures will continue to be employed for remote sensing applications. 

An overwhelming amount of research has gone into the search for fuel efficient 

and minimum-fuel formation control, which will be discussed in Chapter II.  Despite all 

this effort, very little research has been focused on studying the “true” or nonlinear 

dynamics when considering the optimization of this problem.  One could argue that the 

linearized dynamics, especially in the realm of space flight, portray a very accurate 

representation of the actual dynamics.  The study of these linearized systems has far more 

analytical tools than its nonlinear counterpart and produces excellent approximations over 

relatively short time periods when compared to the actual dynamics.  For these reasons, 

linearizing the dynamics has been the popular approach amongst most in this field of 

study. 
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Problem Statement 

 This research uses the nonlinear satellite dynamics to search for an optimal 

solution to the minimum-fuel circular formation problem.  The system dynamics will be 

developed in an Earth-Centered Inertial (ECI) coordinate frame using the methods of 

Hamiltonian dynamics.  With the system dynamics in place, continuous dynamic 

optimization theory will be used to solve for an optimal solution to the minimum-fuel 

problem, and an open-loop control law based on a continuous thrust input will be 

developed.  The uncontrolled reference trajectory off which the formation is based will be 

restricted to a circular, inclined orbit.  In an effort to examine the long-term behavior of 

the formation, the search for periodic or quasi-periodic solutions to the optimization of 

one period of the motion will be the focus of this research. 

Problem Description 

This section will discuss the basics of satellite formation flight.  The necessary 

coordinate frames are introduced and their importance to the setup of the relative motion 

problem is discussed.  Also, circular satellite formations will be described, to include 

their geometry requirements and their importance to satellite formation imaging 

applications. 

Coordinate Frames 

 As mentioned in the problem statement, an ECI-coordinate frame will be used to 

develop the equations of motion.  This is a non-rotating frame which is fixed at the center 

of the earth as shown in Figure 1.  Along with the ECI frame, another coordinate frame 

that is extensively used to describe the relative motion of spacecraft is the Hill frame (7).  
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This coordinate frame is centered on a reference trajectory, and the position and velocity 

of the deputy (or follower) satellites orbiting near this reference trajectory are described 

using this “relative” Hill frame.  The Hill frame, shown and described in Figure 2, is 

important when discussing geometry requirements within a formation, as well as 

providing an excellent alternative to describing the dynamics of the formation. 

 

X

Z

Y

 

Figure 1.  Earth-Centered Inertial Coordinate Frame 

The need to describe the equations of motion in the ECI frame arose from the 

desire to include earth oblateness effects, which are a function of a satellite’s geocentric 

latitude.  These effects and their description in the dynamic model will be developed later 

in the paper.  Initially, it was desired to derive the equations of motion in the Hill frame 

utilizing Hamiltonian dynamics.  Unfortunately, the inertial Z-position needed to describe 
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the satellite’s latitude induced a cross-coupling of the relative and inertial coordinates in 

the Hamiltonian system.  Because of this, Hamilton’s equations could not be developed 

in the relative frame, leading to the necessary development of an inertial set of equations 

of motion.  

 

R
x

y

z

R – radius vector of reference
trajectory from center of
Earth

x – centered on reference
trajectory, pointing in
radius (R) direction
{radial}

y – centered on reference
trajectory, in the plane and
direction of motion, 
perpendicular to radial 
direction {in-track}

z – centered on reference 
trajectory, perpendicular
to radial and in-track 
directions by right-hand
rule {cross-track} 

 

Figure 2.  Relative Hill Frame 

Circular Formations 

 There are two common circular formations currently being studied, circular and 

projected circular.  These formations are populated by the chief satellite, which is located 

at the center of the circular formation, and any number of deputy satellites which are in 

an apparent circular orbit around the chief.  The center of the circular orbit need not be a 

satellite, as imaging applications have no requirement for such a centered satellite.  
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Instead, the center of the formation is a reference trajectory that the deputies are formed 

about.  An illustration of this type of formation can be seen in Figure 4.  This research 

considers the formation center to be a reference trajectory. 

 

x

y

z

R

r
ρ Deputy Satellite

Reference Trajectory

 

Figure 3.  Formation Geometry 

Sabol et al. discuss the geometry requirements in the Hill frame associated with 

each formation type (15:272-273).  The satellite formation geometry is given by Figure 3, 

where r  is the radius vector of a deputy satellite from the center of the earth, and ρ  is 

the relative radius vector of the deputy with respect to the reference trajectory.  A circular 

formation maintains a constant magnitude of the relative radius vector: 

 2 2 2 2x y zρ = + +  (1)
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As described by this relationship, the deputy satellites maintain a constant distance from 

the reference trajectory.  This formation structure creates a two-dimensional array whose 

imaging information can be synthesized, resulting in a higher resolution than each 

individual sensor is capable of producing.  A projected circular formation is a special 

case of the circular formation in which a constant distance from the reference trajectory is 

required in the relative y-z plane: 

 2 2 2y zρ = +  (2)

This relationship maintains a constant circular geometry projected on the surface of the 

earth, which also has numerous remote sensing applications.   

This research is focused on the circular formation.  One of the limiting factors of 

projected circular formations is the need to use relative coordinates in the optimization 

process due to the dependence on motion in the relative y-z plane.  A circular formation 

requires a constant total distance, which can be formulated in either inertial or relative 

coordinates. 

Perturbations and Assumptions 

 The existence of small perturbations, or external forces, can drastically influence 

the motion of orbiting space systems.  This deviation from two-body motion comes in 

many forms to include solar radiation pressure, third-body gravity perturbations (from the 

Sun or Moon for example), and the zonal, sectoral, and tesseral harmonics created by 

non-uniformities of the orbited mass (in this case earth).  These perturbations, while 

small in magnitude, quickly complicate the analytical representation of the system 

dynamics.  Especially in the case of optimal control, when not only are the system states 
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of importance, but also the co-states, the derivation of the equations of motion can 

become rather intensive.  Many of these external perturbations will be ignored in this 

formulation, keeping only those with the most significant effects on the motion of the 

satellite formation.  Only the zonal harmonic created by the earth’s equatorial bulge (J2 

perturbation) will be included in the equations of motion for this research.     

 Another prevalent perturbation in low-earth orbit is atmospheric drag.  Drag 

effects induce the need for corrective thrusting for both formation keeping (maintaining 

the formation geometry) and station keeping (overcoming drag to maintain the satellite’s 

orbit altitude).  Assuming that each satellite in the formation has the same ballistic 

coefficient and that the formations are limited to relatively small separations, the drag 

effect on each satellite will be essentially identical, and little to no formation-keeping 

corrections will be required.  Also, the altitude of each satellite will decay at 

approximately the same rate assuming small formation separation.  Under these 

presumptions, drag effects will be ignored for this research. 
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II. Literature Review 

 

Overview 

Within the last 10 to 15 years, an immense amount of research has gone into the 

field of satellite formations.  The Air Force as early as the mid 1990’s began to see the 

possible advantages of employing a formation of satellites for sparse aperture sensing 

missions.  In 1995, the Air Force decided to push forward with the exploration of these 

technologies, and in 1997, the Air Force Research Lab (AFRL) developed a space 

mission concept for these applications (12:1).  As the Air Force began to see the 

importance of harnessing this new technological challenge, they began to sponsor 

numerous research efforts. 

Along with the efforts of the Air Force, various other efforts have also gone into 

the study of satellite formations.  Here in the United States and abroad, individuals and 

project teams alike have strived to understand the intricacies of this technology and in 

their efforts have shown that the uses for this capability are endless, yet more work is 

needed to show that this new method of performing space sensing and surveillance will 

be beneficial over current single-sensor practices. 

Research 

 The fundamental reference in the study of the dynamics of close-proximity 

spacecraft is the paper by Clohessy and Wiltshire (5).  In this work, the linear dynamics 

for a satellite rendezvous problem are derived, which are now commonly known as either 

the Clohessy-Wiltshire (CW) equations or Hill’s equations after G.W. Hill (7).  The 
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intrinsic value of these differential equations is the existence of a closed form solution, 

allowing for a description of the dynamics as functions of time.  Currently, most 

applications involving either spacecraft rendezvous or satellite formations utilize the CW 

equations when developing the dynamic model, as they provide an extremely precise 

approximation to the actual dynamics over short time periods. 

 

 

Figure 4.  TechSat 21 Sparse Aperture Formation 

 Perhaps the most significant effort to study and understand the possibilities and 

capabilities of a formation of microsatellites was the TechSat 21 flight experiment 

conducted by AFRL in the late 1990’s and early 2000’s.  The goal of the experiment was 

to launch three 150 kg satellites into a 550 km low-earth orbit (LEO) to test our current 

knowledge and capabilities in autonomous formation flying and sparse aperture sensing 

(12:2). Figure 4 is a depiction of the TechSat 21 sparse aperture formation with eight 

satellites in the cluster (12:1).  Martin and Kilberg perform a comprehensive overview of 



 

11 

all the satellite systems, including the power, propulsion, and attitude control systems 

among others (12:5-9).  Hill’s equations were used to develop a dynamic model for 

simulation.  Burns et al. also cover the propulsion and control concepts that TechSat 21 

was developing (4:20-23).  Unfortunately, the TechSat 21 program was canceled before it 

ever flew, but the research programs that spawned from its development drastically 

improved the state-of-the-art for formation dynamics and control. 

 The vast majority of the formation theory used in this paper was provided by 

Sabol et al. (15).  This paper introduced the four main formation flying designs studied in 

current literature, those being the in-plane, in-track, circular, and projected circular 

formations.  The initial conditions necessary to employ each formation design were also 

derived.  The DSST Averaged Orbit Generator was used to propagate each formation 

design for one year in the presence of realistic dynamics and perturbations, and the 

results were presented.  The advantage of using DSST is its use of mean orbital elements, 

which allows for quick integration over extended time periods.  Once an idea of the 

extended behavior of each design was obtained, an analytic approach was used to solve 

for the fuel requirements for both formation keeping and station keeping. 

 Sedwick et al. conducted a comprehensive overview of the numerous sources of 

perturbations acting on an earth-orbiting formation (19).  These forces include 

perturbations from the non-uniformity of the earth’s mass, atmospheric drag, solar 

pressure, and electromagnetism.  It was found that the most significant perturbation 

acting on an object in LEO was caused by the earth’s non-uniform mass distribution, 

more specifically the perturbation caused by the bulging of the earth at the equator known 
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as the J2 perturbation.  The fuel requirements for overcoming J2 are significantly larger 

than the drag requirement, and solar pressure and electromagnetic effects are minimal in 

LEO. 

 Sparks (20) used the CW equations to develop a feedback control law for 

projected circular formations.  The methodology behind the control law consisted of a 

state feedback, linear quadratic controller applied to the CW equations for formation 

keeping of the projected circular formation.  Tracking errors for the control law were 

limited to 50 meters over a period of three days, and the baseline propellant needed for 

impulsive control was given. 

 In addition to the numerous aspects of formation flight that have been undertaken 

in research, there are also several different coordinate systems and representations that 

have been developed in an attempt to simplify the analytic overhead of describing 

formation flight.  The majority of these representations is linear or is accurate to first or 

second order at the most.  These analytic developments lend themselves to closed-form 

solutions, as did the Clohessy-Wiltshire development.  When the nonlinear approach is 

undertaken, the numeric integration of differential equations is nearly unavoidable. 

 Alfriend and Schaub (1;16) used mean Delaunay orbit elements to develop 

constraints that provide J2-invariant relative orbits which are accurate to first order.  

These constraints implicitly restrict the values of semi-major axis, eccentricity, and 

inclination to eliminate the secular drift between the satellites.  Schaub et al. used these 

mean orbital elements to develop two nonlinear feedback control laws which are shown 

to perform well in minimizing the tracking errors over multiple orbits (17).  Vadali et al. 
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used the mean orbital element theory formulated by Alfriend and Schaub to develop 

initial conditions that result in periodic motion, and then developed a fuel-optimal, 

impulsive control law to maintain the formation (21). 

 Schweighart and Sedwick capture the effects of J2 in a set of linear equations of 

motion (18).  They go on to show that given the correct initial conditions, these equations 

have only small errors when compared to the actual nonlinear dynamics over all 

formation configurations.  A closed-form solution to the differential equations of motion 

is found.  This provides an excellent tool for analyzing the periodic and secular effects 

caused by the J2 perturbation while also maintaining the ability to use the tools of linear 

theory for optimization and control applications. 

Kechichian developed a full set of nonlinear differential equations to include both 

drag and oblateness effects (9).  The derived differential equations can be numerically 

integrated to exactly describe relative satellite motion in the presence of only the J2 

perturbation and atmospheric drag.  These equations are valid for circular and eccentric 

motion of the reference trajectory, although they are extremely geometry intensive. 

 Lovell and Tragesser (11) develop what they term “relative orbital elements,” 

which are a change of coordinates derived from the CW equations.  Both single-burn and 

multiple-burn impulsive guidance strategies are developed based on the relative orbital 

elements.  The authors also look at limiting cases in the control strategies, which are a 

direct result of the system yielding more parameters than equations. 

 Wiesel uses Hamiltonian dynamics and Floquet theory to derive a description of 

the relative motion problem (23).  This solution contains all zonal harmonics, which 
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makes it a much more accurate representation than the unperturbed CW equations.  Very 

accurate comparisons are shown between the Floquet solution and numerical integrations 

of the actual dynamics including zonal harmonics through order and degree 14.  Wiesel 

also shows that additional harmonics, to include sectoral and tesseral harmonics, as well 

as air drag can be incorporated as particular solutions to the Floquet problem.  These 

solutions also compare very well with numerical integrations of the actual dynamics. 

 Kasdin and Gurfil (8) study the relative motion of spacecraft using Hamiltonian 

dynamics as well.  They develop canonical relative motion elements that they term 

“epicyclic” elements.  These epicyclic elements are solved for by solving the Hamilton-

Jacobi equation for the linear part of the Hamiltonian, and the higher order perturbations 

are analyzed using a variation of parameters procedure.  A closed-form solution for 

particular J2-invariant orbits is obtained. 

 Biggs et al. expand on the work of Kasdin and Gurfil by developing a full 

nonlinear, relative description of satellite motion, but is only valid for motion of the 

reference trajectory along the geocentric equator (2).  Included in this description are the 

J2 zonal harmonic and nonlinear gravitational effects.  This development is also valid for 

eccentric motion of the reference satellite, which is of significant value to formation 

analysis.  Newton’s method is then used to search for periodic solutions, which led to J2-

invariant motion.  A discrete linearization was then performed on the equations of 

motion, and a linear quadratic regulator was utilized for closed-loop control of the 

formation. 
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Summary 

 Mission design pertaining to distributed satellite systems is currently a study in 

the trade-offs between fuel requirements and sensor position requirements.  Both of these 

key elements have been studied exhaustively utilizing numerous dynamic representations 

and control techniques.  The search for J2-invariant orbits which require little to no 

control usage to maintain any desired formation geometry has shown promising results.  

This research expands on these ideas to characterize the particular orbits which 

necessitate the least amount of corrective control to maintain a given formation while 

also minimizing unnecessary drift in the formation geometry. 
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III.  Methodology 

 

Overview 

The purpose of this chapter is to present the theory used during this research.  The 

equations of motion derived in an ECI frame will be presented, and a numerical 

comparison against an industry standard package is shown.  The initial conditions for the 

formation which guarantee matching periods of the reference trajectory and deputy 

satellite will be developed.  With the equations of motion in hand, the co-state equations 

of motion will be derived utilizing continuous dynamic optimization theory.  A method 

for solving the resulting two-point boundary value problem will be developed.  Finally, a 

canonical scaling of the entire suite of equations of motion will be performed.   

Equations of Motion 

The equations of motion for this problem could have been attacked in many ways, 

with the two most notable solutions using Newtonian and Hamiltonian dynamics.  

Newtonian dynamics is founded on the force equals mass times acceleration principle, 

while Hamiltonian dynamics allow the equations of motion to take shape using only 

energy methods.  This research will use Hamiltonian dynamics to derive the equations of 

motion for the reference trajectory, although both dynamic methods are equally powerful 

in this particular derivation. 

Meirovitch (13:68) introduces the Lagrangian L as the difference between the 

kinetic and potential energies: 

 L T V= −  (3)
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where T is the kinetic energy and V is the potential energy.  In order to solve for the 

kinetic and potential energies, the position and velocity vectors of the reference trajectory 

at an instant in time must be defined in the ECI frame: 

 [ ]R X Y Z=  (4)

 [ ]R X Y Z=  (5)

The kinetic energy of any object is defined as follows: 

 21
2

T mR=  (6)

where m is the mass of the object.  Using the previous assumption that all the satellites in 

the formation have the same ballistic coefficient (same cross-sectional area and mass), 

the Lagrangian can be described by specific kinetic and potential energies without any 

loss in generality.  The specific kinetic energy can be represented in inertial coordinates 

as follows: 

 ( )2 2 21
2

T X Y Z= + +  (7)

The description for the specific potential energy of an orbiting satellite including only the 

zonal harmonics (ignoring sectoral and tesseral harmonics) is given by Vallado and 

McClain (22:612): 

 
( )

2
1 sinzonal

RV J P
R R
μ φ

∞
⊕

=

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑  (8)

where R⊕  is the equatorial radius of the earth of 6378.137 km and the specific 

gravitational parameter μ ignores the mass of the satellite.  In this derivation, only the 



 

18 

second-order zonal harmonic is of interest, so setting l = 2 produces the following 

simplification: 

 
( )

2
2

23 sinJ RV P
R R

μμ φ⊕= − +  (9)

where the dimensionless J2 constant for the earth is 0.00108263 and φ  is the geocentric 

latitude.  One not-so-minor detail is the fact that all orbiting objects which are not on 

escape trajectories possess negative potential energies (22:612), resulting in the sign 

change reflected in Eq. (9).   To finish representing the potential energy in inertial 

coordinates, an inertial description of the second-order Legendre polynomial P2 must be 

found.  Vallado and McClain (22:517) describe the second-order Legendre polynomial in 

terms of geocentric latitude as follows: 

 ( ) ( )2
2

1sin 3sin 1
2

P φ φ= −  (10)

Vallado and McClain (22:553) also recognize that the geocentric latitude of a satellite can 

be described using inertial coordinates: 

 
sin Z

R
φ =  (11)

Substituting these results into Eq. (9), the expanded final form for the potential energy 

including the J2 harmonic of an orbiting satellite is given: 

 2 2 2
2 2

5 3

3
2 2

J R Z J RuV
R R R

μ μ⊕ ⊕= − + −  (12)

The Lagrangian can now be formed using the kinetic and potential energies.  Substituting 

inertial coordinates in for the radius, the Lagrangian can be represented entirely in inertial 

coordinates: 
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( ) ( )

( )

2 2
2 2 2 2

1/ 2 5/ 22 2 2 2 2 2

2
2

3/ 22 2 2

31 ( )
2 2

2

J R ZL X Y Z
X Y Z X Y Z

J R

X Y Z

μμ

μ

⊕

⊕

= + + + −
+ + + +

+
+ +

 (13)

 Now that the Lagrangian is in hand, the system momenta can be solved for.  

Given a Lagrangian composed of specific energies, the system momenta should be equal 

to the inertial velocities.  Meirovitch (13:82) defines the generalized system momenta Pi 

as follows, where in this derivation the generalized coordinates qi were chosen as the 

inertial coordinates: 

 
i

i

LP
q
∂

=
∂

 (14)

Performing these partial derivatives reveals that, yes indeed, the system momenta are 

equivalent to the inertial velocities: 

 
XP X=  (15)

 
YP Y=  (16)

 
ZP Z=  (17)

 With the system momenta and the Lagrangian, the system Hamiltonian H can 

now be derived.  Meirovitch (13:94) defines the Hamiltonian as follows: 

 
( )

3

1
i i

i
H P q L

=

= −∑  (18)

Meirovitch also states that the system Hamiltonian must not include any generalized 

velocities in its final form, as they must be substituted for with the system momenta.  In 

this case, the two are equal, so a simple substitution reveals the following Hamiltonian: 
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 2 2 2
X Y ZH P P P L= + + −  (19)

Plugging in the Lagrangian that has already been derived and combining momentum 

terms, the final system Hamiltonian including the J2 harmonic for an orbiting satellite is 

given: 

 

( ) ( )

( )

2 2
2 2 2 2

1/ 2 5/ 22 2 2 2 2 2

2
2

3/ 22 2 2

31 ( )
2 2

2

X Y Z
J R ZH P P P

X Y Z X Y Z

J R

X Y Z

μμ

μ

⊕

⊕

= + + − +
+ + + +

−
+ +

 (20)

Meirovitch shows that finding Hamilton’s equations of motion is a simple matter of 

taking partial derivatives of the Hamiltonian (13:94).  These partial derivates take the 

following form: 

 
i

i

Hq
P
∂

=
∂

 (21)

 
i

i

HP
q
∂

= −
∂

 (22)

Calculating these partial derivatives, Hamilton’s equations of motion including the J2 

harmonic for an orbiting satellite are given: 

  
XX P=  (23)

 
YY P=  (24)

 
ZZ P=  (25)

 

( ) ( ) ( )
2 2 2

2 2
3/ 2 5/ 2 7 / 22 2 2 2 2 2 2 2 2

3 15

2 2
X

J R X J R XZXP
X Y Z X Y Z X Y Z

μ μμ ⊕ ⊕= − − +
+ + + + + +

 (26)
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( ) ( ) ( )
2 2 2

2 2
3/ 2 5/ 2 7 / 22 2 2 2 2 2 2 2 2

3 15

2 2
Y

J R Y J R YZYP
X Y Z X Y Z X Y Z

μ μμ ⊕ ⊕= − − +
+ + + + + +

 (27)

 

( ) ( ) ( )
2 2 3

2 2
3/ 2 5/ 2 7 / 22 2 2 2 2 2 2 2 2

9 15

2 2
Z

J R Z J R ZZP
X Y Z X Y Z X Y Z

μ μμ ⊕ ⊕= − − +
+ + + + + +

 (28)

Since the momenta are equivalent to the inertial velocities, the derivatives of the 

momenta iP  are equivalent to the inertial accelerations.  This is important because the 

thruster (control) accelerations can simply be added on to the deputy satellite’s equations 

of motion.  See Appendix A for a complete listing of the equations of motion. 

Validation of the Equations of Motion 

 Vallado and McClain (22:553-554) similarly derive the accelerations by solving 

for the gradient of the J2-simplified disturbing function, reaching the same results that 

have just been shown using Hamiltonian dynamics.  Since this research is numerically 

searching for optimal solutions of the equations of motion utilizing the ODE-45 

integration algorithm in Matlab®, it was also desired to compare the equations of motion 

integrated with Matlab against the numerical integration routines of Satellite Tool Kit® 

(STK). 

 It was desired for the two algorithms to differ only to the meter level over one 

period of the motion.  Achieving this result should preclude any questions regarding the 

validity of the equations of motion and the accuracy of Matlab’s ability to numerically 

propagate them.  A comparison of the two algorithms over a 12-hour period is shown in 

Figure 5.  This figure compares the inertial coordinates of a circular orbit with an altitude 

of 400 km and an inclination of 45 degrees.  The HPOP STK numerical propagator was 
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used, and the gravity model was adjusted to only include J2 effects.  It can be seen that 

the two numerical schemes remain comparable to the 100-meter level in position after 

multiple periods of the motion, which is precise enough to validate both the equations of 

motion and the choice of numerical schemes. 
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Figure 5.  Matlab and STK Numerical Algorithm Comparison 

Initial Conditions for Deputy Satellite 

 Finding or forcing periodic motion drives the selection of the initial conditions for 

the deputy satellites.  If the periods of the reference trajectory and the deputy satellites 

don’t match, analysis over one or multiple periods of the motion becomes subjective on 

the choice of periods.  Also, extrapolating an approximation of the long-term behavior 

from optimization over limited periods of the motion becomes impossible if the periods 



 

23 

of the reference trajectory and the relative formation trajectory don’t match.  Essentially, 

it is desired to find initial conditions for the deputy satellites that guarantee equal periods 

for both relative and inertial motion. 

 Sabol et al. (15:272) geometrically derives the following relative initial conditions 

that induce circular relative motion of the deputy satellite: 

 0 ( / 2)cosdx r θ=  (29)

 0 ( / 2)sindx r n θ= −  (30)

 0 02 /y x n=  (31)

 0 02y nx= −  (32)

 
0 03z x= ±  (33)

 
0 03z x= ±  (34)

where rd is the desired radius of the circular formation, n is the mean motion of the 

reference trajectory, and θ is the phase angle of the deputy within the circle.  Sabol et al. 

also mention that these initial conditions do not produce the same semi-major axis for 

both the reference and deputy orbits.  This fact will result in differing orbital periods, and 

must be corrected.  Sabol et al. does correct the semi-major axes to the same value to 

match the periods, but does not disclose the methodology in doing so. 

   If it is assumed that the deputy satellite starts at its apogee point, then the radial 

velocity 0x  is known to be zero.  The phase angle is set such that any radial velocity is 

eliminated, revealing that the following derivation is valid only if the phase angle equals 

0 or 180 degrees.  Figure 6 shows a representation of the relative orbit starting with a 
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phase of zero degrees.  The center cross represents the reference trajectory and the cross 

on the orbit path represents the starting point (initial conditions) for the deputy satellite. 

 

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

x (km)

Relative Orbit of Deputy Satellite

y (km)

z 
(k

m
)

 

Figure 6.  Relative Orbit of Deputy Satellite with Phase = 0 deg 

 

With the assumptions of phase angle equal to 0 or 180 degrees and zero radial velocity, 

the initial relative positions of the deputy satellite are simplified: 

 
0 2

drx = ±  (35)

 0 0y =  (36)

 
0 0

33
2 dz x r= ± = ±  (37)
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For a phase angle of zero degrees, the signs of both 0x  and 0z  are positive, and for a 

phase angle of 180 degrees both signs are negative to maintain the same relative orbit.  

The following derivation will set the phase angle equal to zero. 

Phase Angle of Zero Degrees 

 With the phase angle set equal to zero, the following are the initial relative 

positions of the deputy satellite: 

 
0 2

drx =  (38)

 0 0y =  (39)

 
0

3
2 dz r=  (40)

The inertial position vector of the deputy satellite can be represented in the Hill frame in 

the following form: 

 1 3ˆ ˆ( )
2 2d dr R r x r z= + +  (41)

After simplifying, the magnitude of the inertial position vector is as follows: 

 2 2
d dr R Rr r= + +  (42)

In order to match the periods of the reference orbit and the orbit of the deputy satellite, 

the energies of the orbits must be matched.  The energy of the deputy satellite and the 

energy of the reference orbit, respectively, are as follows: 

 2
1 2 2

1
2

d d

v
R Rr r

με = −
+ +

 (43)
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2R
με −

= . (44)

The only unknown term in these equations is v, the magnitude of the deputy’s inertial 

velocity vector.  Setting the two energies equal and solving for v, the following result is 

achieved: 

 
2 2

2

d d

v
RR Rr r

μ μ
= −

+ +
 (45)

Now the direction of the velocity must be determined.  Referring to Eq. (34), it 

can be seen that the choice of setting 0x  equal to zero (at apogee) also implies that 0z  is 

equal to zero.  Because of this fact, the only necessary correction to the initial conditions 

given by Sabol et al. is in the in-track velocity 0y .  The resultant initial position and 

velocity vectors of the deputy satellite from the center of the earth represented in the Hill 

frame are given: 

 1 3ˆ ˆ( )
2 2d dr R r x r z= + +  (46)

 
2 2

2 ˆ
d d

v y
RR Rr r

μ μ
= −

+ +
 (47)

If the phase angle had been set to 180 degrees, only a few sign changes would have 

affected the result of the previous development. 

Phase Angle of 90 Degrees 

 In order to populate the formation with more than two deputy satellites, as well as 

study the effects of starting at multiple points in the formation, it is necessary to derive 

the initial conditions for phases of 90 and 270 degrees.  This would permit four deputy 
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satellites into the formation.  The following derivation is for a phase angle of 90 degrees, 

where just like before, the conversion to 270 degrees is just a matter of sign changes. 

Once again starting with the initial conditions from Sabol et al., an initial phase 

angle of 90 degrees reduces the initial conditions to the following: 

 0 0x =  (48)

 
0 2

dr nx = −  (49)

 0 dy r= −  (50)

 0 0y =  (51)

 0 0z =  (52)

 
0

3
2 dz r n= −  (53)

To solve for initial conditions for a phase angle of 270 degrees, just change all signs to 

positive and proceed with the following derivation.  As before, the periods of the relative 

orbit and the reference trajectory orbit are not matched.  To align the periods, the energies 

of the orbits must be matched.  The inertial position vector of the deputy satellite 

represented in the Hill frame is as follows: 

 ˆ ˆdr Rx r y= −  (54)

This easily simplifies to solve for the magnitude of the inertial position vector: 

 2 2
dr R r= +  (55)

The energies of both orbits can then be represented as follows: 
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 2
1 2 2

1
2

d

v
R r
με = −
+

 (56)

 
2R
με −

= . (57)

Solving for the magnitude of the inertial velocity vector of the deputy, the following 

velocity magnitude will match the energies: 

 
2 2

2

d

v
RR r

μ μ
= −

+
 (58)

 Unlike the case for phase equal to zero degrees, where all the velocity was in the 

relative ŷ direction, this case has velocity components in all three relative directions.  To 

solve for the inertial velocity vector, a unit vector for the inertial velocity can be found in 

the relative frame and multiplied by the necessary magnitude v.  The inertial velocity 

vector can be represented as follows: 

 
( ) ( )

ˆ ˆ

ˆ ˆ
i i

d
d dr r Rx r y

dt dt
= = −  (59)

The inertial derivative of the deputy’s position vector has two components, translational 

(derivative in the relative frame) and angular: 

 
( ) ( ) ( )

ˆ ˆ

/ˆ ˆ ˆ ˆ ˆ ˆ
i o

d d o i d
d dRx r y Rx r y Rx r y

dt dt
ω− = − + × −  (60)

where /o iω  is the angular velocity of the relative frame with respect to the inertial frame.  

In this situation, that’s just the mean motion n  of the reference trajectory, represented in 

the relative frame as ˆnz . 
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 After performing the cross product and simplifying terms, the following is the 

result for the inertial velocity vector represented in the relative Hill frame: 

 3ˆ ˆ ˆ
2 2
d

d
r nr x nRy r nz= + −  (61)

The final inertial velocity vector which matches the orbital periods for the reference 

trajectory and the relative orbit of the deputy satellite is the necessary magnitude v 

multiplied by the unit vector of the previous result: 

 rv v
r

=  (62)

The previous developments treated each phase angle independently while solving for the 

resulting initial conditions.  Appendix D provides a general derivation for any choice of 

phase angle within the formation. 
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Figure 7.  Relative Orbit of Deputy Satellite with Phase = 90 deg 
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Continuous Dynamic Optimization  

 The solution methods for dynamic optimization of nonlinear continuous systems 

with fixed final time and free final state are well documented in Bryson and Ho (3:47-

49).  Solving for the optimal solution to continuous, dynamic systems is a problem in the 

calculus of variations, covered by Gelfand (6) in great detail.  The following is a brief 

overview of the setup covered by Bryson and Ho for fixed final time, free final state 

optimization of dynamic systems.  Just a note, do not confuse any of the terminology to 

follow (such as Hamiltonian, Lagrangian, etc.) with the previous derivation of the 

equations of motion. Their appearances in this derivation, although based on the same 

premise, are distinctly different representations. 

 The continuous dynamic system is generically defined as an n-dimensional set.  In 

this case, there are six inertial states, hence the system is six-dimensional, and they can be 

represented as follows: 

 ( ) [ ( ), ( ), ]x t f x t u t t=  (63)

where x (t) represents the inertial states of the system and u (t) represents the continuous 

thrust inputs in the three inertial directions of the deputy satellite shown below: 

 
X

Y

Z

u
u u

u

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (64)

Given this system, it is desired to minimize an overall performance index J (also known 

as a cost function) of the following form: 
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0

[ ( ), ] [ ( ), ( ), ]
ft

f f
t

J x t t L x t u t t dtφ= + ∫  (65)

In this form, the Lagrangian L is the incremental cost along the trajectory which is 

integrated over the entire trajectory, and φ  is the cost associated with the final states of 

the system. 

 Next, the constraints of the system must be adjoined to the performance index.  In 

this case, the only constraints imposed on the system are the equations of motion 

themselves.  These constraints are added to the performance index via a vector of 

Lagrange multipliers λ: 

  
( )

0

[ ( ), ] [ ( ), ( ), ] ( ){ [ ( ), ( ), ] }
ft

T
f f

t

J x t t L x t u t t t f x t u t t x dtφ λ= + + −∫  (66)

The transpose on the Lagrange multiplier vector is simply to match dimensions.  The 

performance index can be simplified by introducing the Hamiltonian H, which takes the 

following form: 

 [ ( ), ( ), ( ), ] [ ( ), ( ), ] ( ) [ ( ), ( ), ]TH x t u t t t L x t u t t t f x t u t tλ λ= +  (67)

 After substituting the Hamiltonian into the performance index, integration by parts can 

be performed to achieve the following result: 

 

( )
0

0 0[ ( ), ] ( ) ( ) ( ) ( )

[ ( ), ( ), ( ), ] ( ) ( )
f

T T
f f f f

t
T

t

J x t t t x t t x t

H x t u t t t t x t dt

φ λ λ

λ λ

= − +

+ +∫
 (68)
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Now the variation in the performance index J  must be taken due to infinitesimal 

variations in the control vector uδ , which also produce variations in the inertial state 

vector xδ .  These variations are taken at fixed times tf and t0: 

 
0

0

f

f

t
T T T

t t t t
t

H HJ x x x u dt
x x u
φδ λ δ λ δ λ δ δ= =

∂ ⎛ ∂ ∂ ⎞⎡ ⎤ ⎡ ⎤= − + + + +⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎝ ⎠
∫  (69)

To force the variations δx(t) to vanish, two necessary conditions arise.  These necessary 

conditions are given below: 

 
( )T Ht

x
λ ∂

= −
∂

 (70)

 
( )T

ft
x
φλ ∂

=
∂

 (71)

Eq. (71) is essentially a boundary condition of Eq. (70).  With these two necessary 

conditions in place, the variation of the performance index is reduced to the following 

form: 

 
0

0

ft
T

t t
t

HJ x u dt
u

δ λ δ δ=

∂
= +

∂∫  (72)

To find a minimum value (extremum) of the performance index, Jδ  must be zero for 

any arbitrary value of uδ .  This is only possible given the following condition, which is 

commonly known as the optimality condition: 

 
0H

u
∂

=
∂

 (73)

Eqs. (70), (71), and (73) complete the first-order solution to the continuous dynamic 

optimization problem, and are known as the Euler-Lagrange equations in the calculus of 

variations.   
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To summarize, the existence of an extremum for the continuous dynamic 

optimization problem is shown utilizing the calculus of variations.  This extremum is 

found through the choice of an appropriate control vector u .  The equations which 

produce this extremum, which are shown in full below, are the first-order necessary 

conditions for an extremum of the chosen performance index (3:49).  In order to 

guarantee that the derived solution is a local extremum, the second-order necessary or 

sufficient conditions covered by Bryson and Ho must also be validated to avoid saddle 

and inflection points in the design space (3:50).  For the purposes of this research, where 

the actual value of the performance index subject to changes in the control vector uδ can 

be analyzed real-time during the iteration process, implementing the second-order 

conditions would be redundant. 

 ( ) [ ( ), ( ), ]x t f x t u t t=  (74)

 
( )

THt
x

λ ∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 (75)

 
0H

u
∂

=
∂

 (76)

 0( )x t given  (77)

 
( )

T

ft
x
φλ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

 (78)

Performance Index and Co-State Equations of Motion 

 For this study, it is desired to minimize three quantities.  First, the amount of fuel 

consumed during the control process must be minimized.  Second, maintaining 
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sufficiently little satellite drift from the desired separation of the circular formation is 

desired.  Finally, given the initial conditions of the deputy satellite, it is desired for the 

final conditions after one orbit to match as closely as possible to the desired initial 

conditions of the deputy’s second orbit.  Not matching these conditions precludes the 

analysis of the long-term behavior of the formation, so it must be added to the 

performance index.  

 The first two conditions are constantly evolving over the path of one orbit.  For 

this reason, satellite drift and fuel effects must be integrated over the whole trajectory, 

and hence make up the Lagrangian of the performance index: 

 2 2
1 2dL k r R r k u⎡ ⎤= − − +⎣ ⎦  (79)

In the Lagrangian, the constants k1 and k2 are weighting factors, which numerically add 

more effort to minimizing one element of the performance index over another.  Given 

this form of the Lagrangian, and remembering the implementation of the Hamiltonian 

from Eq. (67), the following is the Hamiltonian expressed in inertial coordinates: 

 2
2 2 2 2 2 2

1 2( ) ( ) ( )

X Y Z

R R R d X Y Z

X Y Z P P P
X

Y

Z

H k X X Y Y Z Z r k u u u

X
Y
Z
P
P
P

λ λ λ λ λ λ

⎡ ⎤ ⎡ ⎤= − + − + − − + + +⎣ ⎦⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤+ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (80)

where ( , , )r X Y Z=  and ( , , )R R RR X Y Z= .  Notice that the equations of motion for the 

reference trajectory are not included in the Hamiltonian.  Since the reference trajectory is 
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uncontrolled, the Lagrange multipliers for the reference trajectory would have no 

influence on the motion.  This point will become clearer as the derivation progresses.  To 

finalize the Hamiltonian, the equations of motion for the deputy must be substituted in 

before the partial derivatives can be taken.  The Hamiltonian, written fully in inertial 

coordinates, is given in Appendix B. 

 The co-state equations of motion, given by Eq. (75), are a simple yet tedious 

matter of taking partial derivatives of the Hamiltonian.  The software package 

Mathematica® was used to calculate the necessary partial derivatives, and the results are 

given in Appendix B.  These co-state equations almost complete the set of necessary 

equations of motion to solve the dynamic optimization problem.  The only issue that still 

persists is the existence of more variables than equations. 

 To alleviate this issue, the optimality condition given in Eq. (76) is used to solve 

for the control vector u  in terms of the Lagrange multipliers.  The three optimality 

conditions are given below:  

 
22 0

XX P
X

H k u
u

λ∂
= + =

∂
 (81)

 
22 0

YY P
Y

H k u
u

λ∂
= + =

∂
 (82)

 
22 0

ZZ P
Z

H k u
u

λ∂
= + =

∂
    (83)

It can be seen that the control inputs are easily solvable in terms of the Lagrange 

multipliers.  This allows for substitution of the results for u  into the equations of motion, 

and the problem is reduced to 18 equations of 18 unknown variables, which are the six 
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states of the reference trajectory, the six states of the deputy, and the six Lagrange 

multipliers of the deputy.  This further vindicates the earlier stated fact that the equations 

of motion for any uncontrolled trajectory are unnecessary in the Hamiltonian, as the 

Lagrange multipliers for those equations of motion are of no significance. 

 The last condition to meet was to have the final conditions of one orbit match the 

desired initial conditions of the next orbit.  Two solutions were attempted to attack this 

problem.  During the derivation of the initial conditions for the deputy satellite, the 

energies of the reference trajectory and the deputy were set equivalent to match the 

periods.  Initially, it was believed that matching the energies at time tf would drive the 

deputy to the new set of desired initial conditions.  This methodology was unsuccessful, 

as it was easy numerically to match the energies, but was failing to drive the final 

conditions to the desired values.  The second method used the known desired initial 

conditions of the deputy’s next orbit as boundary conditions at time tf.  The cost of the 

performance index at time tf can be represented as 

 2 2 2

3 2 2 2

{ ( ) } { ( ) } { ( ) }
[ ( ), ] ,

{ ( ) } { ( ) } { ( ) }
bc bc bc

f bc f bc f bc
f f

X f X Y f Y Z f Z

X t X Y t Y Z t Z
x t t k

P t P P t P P t P
φ

⎡ ⎤− + − + −
= ⎢ ⎥

+ − + − + −⎢ ⎥⎣ ⎦
 (84)

where once again the constant k3 is a weighting factor and the subscript bc signifies the 

boundary condition states.  This method produced promising results, as driving this 

quantity to zero produced the desired initial conditions of the deputy for successive 

orbits.   

The performance index is now defined in full for this problem.  The Euler-

Lagrange equations provide final boundary conditions for the Lagrange multipliers given 
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by Eq. (78), but their initial values which propagate to the final boundary conditions are 

unknown.  This presents a class of problems known as two-point boundary value 

problems.  

Solving the Two-Point Boundary Value Problem 

 The two-point boundary value problem for this research consists of known initial 

states which can be propagated forward to find the end states at some chosen period time 

tf.  With the end states in hand, the boundary conditions for the Lagrange multipliers can 

be calculated.  The initial Lagrange multipliers which result in meeting the final boundary 

conditions are unknown.  Bryson and Ho cover numerous algorithms that can solve this 

class of problems (3:212-228).  The method chosen for this research because of its 

simplicity is the forward shooting method utilizing direct numerical differentiation. 

 The forward shooting method uses a transition-matrix algorithm, initialized by 

guessing the initial values for the Lagrange multipliers.  From here, the equations of 

motion and co-state equations of motion are propagated forward to time tf and the 

resulting final Lagrange multipliers are compared against the known final boundary 

conditions.  This comparison is used to form a new guess for the initial Lagrange 

multipliers, and the process is repeated until the final conditions are matched.  Below is 

the step-by-step approach laid out by Bryson and Ho, modified to solve this particular 

problem (3:215-217).   

Step 1:  Guess the unknown initial Lagrange multipliers 0( )tλ . 

Step 2:  Integrate Eqs. (74) and (75) forward from t0 to tf and record the resulting 

final Lagrange multipliers ( )ftϕ . 
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Step 3:  Determine the transition matrix which relates small changes in the initial 

guess to small changes in the final conditions 

 

0
0

( )
( ) ( )

( )X

Y

Z

X

Y

Z f
f

P

P

P

t
t t

t

δλ
δλ
δλ ϕ

δϕ δλδλ λ
δλ

δλ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ∂
⎢ ⎥= =

∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (85)

 where the transition matrix is given by 

 

0

( )
( )

ft
t

ϕ
λ

∂

∂
 (86)

Step 4:  Choose ( )ftδϕ  in order to bring the next iteration closer to the desired 

values bcϕ , given by 

 ( ) ( ) , 0 1f f bct tδϕ ε ϕ ϕ ε⎡ ⎤= − − < ≤⎣ ⎦  (87)

Step 5:  With the chosen values of ( )ftδϕ , the new initial guess for 0( )tλ  can be 

calculated from Eq. (85) as follows: 

 1

0
0

( )
( ) ( )

( )
f

f

t
t t

t
ϕ

δλ δϕ
λ

−
∂⎡ ⎤

= ⎢ ⎥∂⎣ ⎦
 (88)

Step 6:  Using the following equation: 

 
0 0 0( ) ( ) ( )new oldt t tλ λ δλ= +  (89)

 repeat Steps 1-5 until ( )ftϕ  has the desired values to some specified 

accuracy. 
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 The transition matrix given by Eq. (86) is formulated utilizing direct numerical 

differentiation. Direct numerical differentiation requires as many additional integrations 

of the equations of motion and co-state equations as there are Lagrange multipliers, in 

this case six.  One at a time, each initial Lagrange multiplier 0( )i tλ  is changed by some 

small amount 0( )i tδλ  from the initial guess.  The equations of motion and co-states are 

integrated, and the resulting change in final conditions ( )ftδϕ  is recorded and divided by 

the chosen 0( )i tδλ .  After completing all six integrations, the transition matrix is formed.  

Bryson and Ho (3:217) cover the process in more detail and also discuss the inherent 

difficulties with the approach.  Lewis and Syrmos provide sample code for solving the 

two-point boundary value problem using both direct numerical differentiation and 

another robust algorithm known as the backward-sweep method (10:521-527). 

Canonical Formulation 

 One common difficulty in numerically optimizing dynamic systems is scaling.  

With the equations of motion and the co-state equations of motion finalized, sample runs 

were performed to test the code’s reliability.  Unfortunately, in its current form, the code 

would only converge for time spans of a few seconds.  The numerics of the current 

formulation, in particular the vastly differing orders of magnitude represented by terms in 

the equations of motion, made the integration impossible over relatively long time 

periods.  To assuage this problem, a canonical formulation of the problem had to be 

developed. 
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 For this problem, it was chosen to scale the position (distance) and velocity 

(speed) units by parameters of the reference trajectory.  Distance units (DU) were chosen 

as the semi-major axis of the two-body motion of the reference trajectory.  Speed units, 

explicitly stated as distance units per time units (DU/TU), were chosen to be the two-

body circular orbit velocity of the reference trajectory.  Given these parameters, the 

gravitational parameter μ becomes unity and the two-body period of the motion becomes 

2π, cornerstones of the common canonical formulation in orbital dynamics.  After scaling 

all the parameters of the problem, attempts to run the code to convergence over one two-

body period of the reference trajectory motion were successful. 
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IV.  Analysis and Results 

 

Chapter Overview 

This chapter provides an overview of the critical perturbing effects of the J2 zonal 

harmonic and their applications in this research.  Due to these effects, the choice of 

periods of the motion over which to optimize is examined, with the final choice being 

directly correlated to the perturbing effects on the reference trajectory.  In order to gauge 

the long-term behavior and necessary control histories for the formation, it will be shown 

that there is an inherent quasi-periodic nature in the relative control histories.  This will 

allow for an approximation of the annual ΔV requirements needed to maintain the desired 

formation separation.  Finally, results of the optimization are presented in a case study 

format to develop fundamental trends in the ΔV requirements based on differing orbital 

parameters and initial conditions. 

J2 Effects and the Period of Motion 

Deviations from two-body motion must be compensated for in all aspects of this 

problem.  Vallado and McClain (22:612-628) go into great detail examining the 

perturbing effects of the earth’s zonal harmonics, particularly the secular effects as well 

as the short- and long-period effects.  Under two-body conditions, and given the initial 

conditions already derived, the formation would only deviate slightly from the desired 

relative radius.  With the J2 perturbation added to the equations of motion, a secular drift 

is now present in the formation dynamics.  Shown in Figure 8 is the two-body and 

perturbed formation separation over five two-body periods of the motion.  The formation 
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is at an altitude of 400 km and at an inclination of 45 degrees (these will be the baseline 

orbital parameters for most of the findings for this research), and the desired relative orbit 

radius is 1 km.   

 From the figure, it is evident that the secular effects described by Vallado and 

McClain cause a secular drift in the separation of the deputy from the reference 

trajectory.  The primary mechanism behind this drift is the fact that the derived initial 

conditions for the formation produce orbits for the reference trajectory and deputy 

satellite with differing inclinations. These differences in inclination induce different 

nodal regression rates due to J2 effects.  Meanwhile, the two-body case produces only 

minimal periodic drift on the order of tenths of a meter. These secular effects induce the 

need for formation control. 
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Figure 8.  Formation Separation 
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The choice of periods over which to optimize is significantly affected by these 

perturbing effects.  The desired end product of this research is an estimate of the long-

term fuel requirements necessary to maintain a circular formation for multi-year 

missions, yet it is only practical given the current approach to optimize over short time 

periods.  In order to evaluate long-term requirements based on short-term results, a 

repeatable control law for successive orbits must be found.  The J2 harmonic is a 

perturbing force driven by, among other things, geocentric latitude.  In order to achieve a 

periodic solution necessary for the study of long-term behavior, it can be assumed that 

the mean motion of the formation must be periodic with respect to latitude.   

To exploit the symmetries present in the perturbing forces, a good choice for the 

period of motion would be crossings of the earth’s equatorial plane by the reference 

trajectory.  This choice of periods would zero out the latitude at the beginning of each 

successive orbit, and should result in a periodic control law which would be valid for 

successive orbits since the perturbing force due to J2 is symmetric about the equator.  

This approach would lend itself very well to approximating the long-term fuel 

requirements associated with the optimal control of the formation. 

Given an uncontrolled reference trajectory, another option for optimizing the 

required control costs is to take advantage of the natural motion of the formation.  A look 

must be taken at the uncontrolled motion of the reference trajectory to find the natural 

periods existent in the motion.  It is expected that the natural motion will deviate from 

two-body motion due to perturbations, but whether the natural periods of the motion will 
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match either the two-body period or the desired equatorial crossing period must be 

determined.   

Given once again an orbit of 45-degree inclination and an altitude of 400 km, 

Figure 9 displays the short-period effect on semi-major axis over five two-body periods 

of the motion.  Under two-body conditions, the circular orbit of the reference trajectory 

would maintain a constant value for semi-major axis, yielding a constant value for orbital 

radius.  The initial conditions for the deputy satellite would induce slightly elliptical 

motion.  Now with the J2-perturbation included, both motions are elliptical. 

 In Figure 9, the dashed line represents the orbital radius of the reference 

trajectory, and the solid line represents the orbital radius of the deputy satellite.  It is this 

natural periodic motion of the reference trajectory that presents an excellent candidate for 

the period of motion to optimize over.  Table 1 shows the three periods discussed so far 

for comparison, with the same orbital parameters of 400-km altitude and 45-degree 

inclination. 

 

Table 1.  Periods of Motion 

Periods of Motion Time (sec)
Two-body 5553.62

Equatorial Crossing 5539.64
Natural Period of Semi-major Axis 5543.65  
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Figure 9.  Orbital Radius Comparison 

 

One conclusion drawn from Table 1 is how little the optional periods of the 

motion differ relative to the length of one orbit, only by a matter of seconds.  Despite the 

small differences, the natural period doesn’t match either the two-body period or the 

equatorial crossing period.  These differences have distinct effects on the numerical 

optimization process, especially when the final boundary conditions for the optimization 

are calculated.  Establishing these boundary conditions for studying successive orbits in 

the manner derived in Chapter III makes it necessary to choose a natural period of the 

motion as the period to optimize over.  For this reason, the natural period of the semi-

major axis of the reference trajectory was chosen as the period of the motion. 
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Periodic or Quasi-Periodic Solutions 

 The selection of the period of the motion over which to optimize now poses an 

uncertainty as to whether the solutions will be periodic over successive orbits.  

Obviously, control laws in the inertial frame will not be periodic as the orbits precess 

about the earth.  However, the resulting control laws can be described in the Hill frame 

and studied for periodic nature.   

 To study the periodic nature of the resulting control laws, successive orbits were 

run to convergence one at a time given orbital parameters of 400-km altitude and 45-

degree inclination.  After an optimal control law was found for the first period of the 

motion, the final states of the system were used as initial conditions for a second orbit 

and an optimal control law was found for the second period of the motion.  Three 

successive orbits were optimized in this fashion and a comparison of their resultant 

control histories, represented in the relative Hill frame, is shown in Figure 10. 

 It is apparent from Figure 10 that the solutions are not perfectly periodic.  In fact, 

there are jump discontinuities in the control laws at the beginning of each successive 

orbit.  Despite these discontinuities, Figure 11 shows that the relative positions within the 

formation do experience periodic progression, validating the utility of the resulting 

control laws.  These results preclude the precise estimation of the necessary control usage 

over long time periods.  However, only small discrepancies in the control laws exist on 

the order of 5% between orbits, resulting in a quasi-periodic solution whose results can 

be extended over any number of orbits to produce a reasonable approximation of the 

optimal control requirement. 
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Figure 10.  Deputy Satellite Control Histories for Three Successive Orbits 
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Figure 11.  Deputy Satellite Relative Positions for Three Successive Orbits 
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Optimization Results 

Case Study #1 

For case study #1, the following table and figures display the results for an orbital 

altitude of the reference trajectory of 400 km and an initial phase angle of zero degrees at 

varying inclinations.  The relative importance of minimizing satellite separation and 

control usage was set equal.  Differing values for k1 and k2 will be treated in a later case 

study.  The results for each run (different inclinations) are accompanied by a figure 

displaying the relative satellite separation from the reference trajectory and the resultant 

open-loop control law represented in the Hill frame.  In order to calculate the estimates 

for annual ΔV, it was assumed that attitude control is in place to ensure alignment of the 

control thrusters of the deputy satellite with the relative Hill frame throughout the orbit.  

The relative components of the control accelerations (ux, uy, and uz) are integrated over 

the period of motion and summed to solve for the ΔV per orbit.  This ΔV per orbit is then 

multiplied by the number of orbits completed per year.  All of these parameters are 

summarized in Table 2. 

Table 2.  Case Study #1 

Altitude 400 km
Formation Radius 1 km Inclination (deg): Annual ΔV (m/s):
Phase 0 deg 0 153.58

30 104.60
45 63.68

k1 1.0E+03 60 34.63
k2 1.0E+03 90 27.88
k3 1.0E+08

Orbital Parameters

Performance Index

RESULTS
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Figure 12.  Case Study #1, 0-deg Inclination 
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Figure 13.  Case Study #1, 30-deg Inclination 
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Figure 14.  Case Study #1, 45-deg Inclination 
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Figure 15.  Case Study #1, 60-deg Inclination 
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Figure 16.  Case Study #1, 90-deg Inclination 
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The most likely contributor to the resulting trend in ΔV requirements is the differing 

nodal regression rates of the reference trajectory and the deputy satellite.  Given the 

initial conditions derived for the formation with phase equal zero degrees, Table 3 

displays the resulting inclination comparison for the formation. 

 

Table 3.  Inclination Comparison for Phase = 0 deg 

Chief Deputy Δi
0 0.007319997 0.00732000

30 30.00000081 0.00000081
45 45.00000047 0.00000047
60 60.00000027 0.00000027
90 90 0

Formation Inclinations (deg)

 

 

Using these differences in inclination, the differences in the nodal regression rates Ω  can 

be calculated.  Vallado and McClain (22:607) give the equation for nodal regression rate 

in the presence of J2: 

 2
2

2 2 2

3 cos
2 (1 )

nJ R i
a e

⊕Ω = −
−

 (90)

where the parameter p in Vallado and McClain has been replaced with the equivalent 

classical orbital elements of semi-major axis a and eccentricity e.  To solve for the 

resulting differences in nodal regression rate due to differences in inclination, the 

variation of Eq. (90) can be taken: 

 2
2

2 2 2

3 sin
2 (1 )

nJ R i i
a e

δ δ⊕Ω =
−

 (91)
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Plugging in values for the deputy satellite, Figure 17 shows the resulting trend in the 

difference between the nodal regression rates and how it compares with the trend in 

annual control cost.  It can be seen that as the inclination of the formation increases, the 

nodal regression difference between the reference trajectory and the deputy satellite 

approaches zero, which vindicates the apparent minimum in the ΔV requirement at or 

near a polar configuration. 
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Figure 17.  Annual ΔV and Nodal Regression Rates for Phase = 0 deg 
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Case Study #2 

For case study #2, the following table and figures display the results for an orbital 

altitude of the reference trajectory of 400 km and an initial phase angle of 90 degrees at 

the same inclinations as Case Study #1.  A comparison can then be made between the 

choice of initial phase angle and the necessary control requirements.  The relative 

importance of minimizing satellite separation and control usage was set equal.  All of 

these parameters are summarized in Table 4. 

 

 

Table 4.  Case Study #2 

Altitude 400 km
Formation Radius 1 km Inclination (deg): Annual ΔV (m/s):
Phase 90 deg 0 164.01

30 85.39
45 33.32

k1 1.0E+03 60 67.08
k2 1.0E+03 90 94.50
k3 1.0E+07

Orbital Parameters

Performance Index

RESULTS
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Figure 18.  Case Study #2, 0-deg Inclination 
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Figure 19.  Case Study #2, 30-deg Inclination 
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Figure 20.  Case Study #2, 45-deg Inclination 
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Figure 21.  Case Study #2, 60-deg Inclination 
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Figure 22.  Case Study #2, 90-deg Inclination 
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 In the case of phase angle equal to 90 degrees, the driving force behind the 

resulting trend line in control cost appears to be the difference in secular drift rates of the 

argument of perigee ω.  Once again, the variation of the secular drift rate can be taken to 

analyze the difference in drift rates.  Vallado and McClain (22:609) give the equation for 

the secular drift rate of the argument of perigee in the presence of J2: 

 ( )
2

22
2 2 2

3 4 5sin
4 (1 )

nJ R i
a e

ω ⊕= −
−

 (92)

where once again the parameter p has been replaced by the classical orbital elements.  

Taking the variation of Eq. (92), the following equation shows how variations in 

inclination produce variations in the drift rate of the argument of perigee: 

 
( )

2
2

2 2 2

3 4 10sin cos
4 (1 )

nJ R i i i
a e

δω δ⊕= −
−

 (93)

For the case of phase equal to 90 degrees, the derived initial conditions produce a 

constant variation in inclination iδ  equal to 0.0073205 at all reference trajectory 

inclinations.  Therefore, the variations in argument of perigee drift rate are solely 

dependent on the inclination of the orbit. 

 A comparison between the trends in annual ΔV requirements and variations in 

argument of perigee drift rate is shown in Figure 23.  For the case of phase angle equal to 

90 degrees, this comparison strongly supports a possible minimum at or near 45 degrees 

of inclination.  
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Figure 23.  Annual ΔV and Argument of Perigee Drift Rate for Phase = 90 deg 

 

The trend lines for the first two case studies are shown in Figure 24.  One obvious 

conclusion drawn from these results, for the probable reasons given above, is that the 

optimal fuel requirement is heavily dependent on the choice of initial conditions for the 

deputy satellite and the inclination of the reference trajectory.  Given the limited number 

of data points, it isn’t possible to pinpoint an “optimal” reference trajectory inclination 

which minimizes fuel requirements for the entire formation.  The 0-degree phase 

condition, as stated earlier, appears to have a minimum at or near 90 degrees of 

inclination, while the 90-degree phase condition is minimal in the mid-latitude 

inclinations, with a strong argument that the minimum is at or near 45 degrees.  It can 

also be seen that formations at or near the equator will have the maximum fuel 
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requirement, which should be expected as the nodal regression of the orbits due to J2 is 

strongest at low inclinations.  Given the data at hand, the configuration that appears to 

minimize control cost for the entire formation exists in the inclination range of 45 to 60 

degrees, with an estimated control requirement of 40-50 m/s/year per deputy. 
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Figure 24.  Trends in Annual ΔV Estimates Based on Initial Phase Angle 
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Case Study #3 

 For case study #3, the orbital altitude of the formation was modified to study the 

effects of increasing the altitude on fuel requirements.  The altitude of the reference 

trajectory was increased to 800 km, with the phase angle set back to zero degrees and the 

radius of the satellite formation remaining at 1 km.  The relative importance of 

minimizing satellite separation and control usage was set equal.  For this case study, 

summarized in Table 5, only two inclinations were chosen to establish the necessary 

trends, 45 and 90 degrees. 

 

 

Table 5.  Case Study #3 

Altitude 800 km
Formation Radius 1 km
Phase 0 deg Inclination (deg): Annual ΔV (m/s):

45 47.67
90 20.90

k1 1.0E+03
k2 1.0E+03
k3 5.0E+07

Orbital Parameters

Performance Index

RESULTS
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Figure 25.  Case Study #3, 45-deg Inclination 
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Figure 26.  Case Study #3, 90-deg Inclination 
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Comparing Tables 2 and 5, it can be seen that by increasing the altitude of the 

formation, the annual ΔV estimate is decreased.  As the formation gains altitude, the 

perturbing part of the potential function given by Eq. (12) is diminished, resulting in less 

need for control authority to counter the perturbing forces.  A comparison of separation 

profiles for an inclination of 45 degrees is given in Figure 27, which shows less deviation 

at higher altitudes.  A direct comparison of these results can be made with the results 

from Sabol et al. (15:276-277), who formulated an annual ΔV requirement of 

approximately 50 m/s/year for an 800-km altitude, polar configuration.  Given the results 

of this study for a similar configuration of approximately 20 m/s/year, it has been shown 

that it may be possible to improve upon the ΔV requirements found by Sabol et al. 
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Figure 27.  Comparison of Separation Profiles at Different Altitudes 
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Case Study #4 

 For case study #4, the radius of the satellite formation was modified to the study 

the effects of increasing the formation size (aperture size) on fuel requirements.  The 

altitude of the reference trajectory was set to 400 km and the phase angle was zero 

degrees.  The radius of the satellite formation was studied at two and ten kilometers.  The 

relative importance of minimizing satellite separation and control usage was set equal.  

Table 6 summarizes the results for this case study.   

 

 

 

Table 6.  Case Study #4 

Altitude 400 km
Inclination 45 deg
Phase 0 deg Formation Radius (km): Annual ΔV (m/s):

2 125.80
10 617.17

k1 1.0E+03
k2 1.0E+03
k3 1.0E+08

Orbital Parameters

Performance Index

RESULTS
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Figure 28.  Case Study #4, 2-km Formation Radius 
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Figure 29.  Case Study #4, 10-km Formation Radius 
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 Two interesting trends are formulated from these results.  First, despite the limited 

number of data points, the increase in the annual ΔV requirement appears to have an 

almost linear relationship with increase in formation size shown by Figure 30.  The 

increase should be expected, for as the formation radius is increased, variations in the 

perturbing forces discussed in case studies 1 and 2 also increase, requiring more control 

authority to maintain the formation.  Second, comparing percent deviation from the 

desired formation radius shows that there is an increase in deviation as formation size 

increases, as well as a change in the profile of the separation.  These results are shown in 

Figure 31. 
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Figure 30. Trends in Annual ΔV Estimates Based on Formation Size 
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Figure 31.  Trends in Percent Deviation from Desired Formation Radius 

 

Change in the Performance Index 

 All of the previous results have set equal the relative importance between 

minimizing formation separation and control usage.  This set of parameters produced 

excellent results for both separation and control, but it was desired to see if further 

minimization of control usage was possible at the expense of the integrity of the circular 

formation.  This last set of results modified the weighting factors of k1 and k2 to 100 and 

10,000, respectively, which heavily weighted minimizing control usage over satellite 

drift.  An orbital altitude of 400 km and an inclination of 45 degrees were used.  The 

phase angle for the formation was set to zero degrees and the formation radius was 1 km.  

This choice of parameters resulted in an annual ΔV estimate of 59.62 m/s. 
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Figure 32.  More Weight on Minimizing Control 
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 These results convey the possibility of even further ΔV savings as the 

performance index is modified to add more weight to minimizing control.  This 

comparison produces a ΔV savings of 4 m/s/year, with the loss in separation precision 

shown in Figure 33. 
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Figure 33.  Comparison in Satellite Separation for Modified Performance Index 
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V.  Conclusions and Recommendations 

 

Conclusions of Research 

Given the derived initial conditions, the control requirements necessary to 

maintain the integrity of a circular formation were shown to be highly dependent on the 

starting phase angle of the deputy satellite within the formation.  An initial phase of zero 

degrees requires less control authority as the inclination of the reference trajectory is 

increased, reaching an apparent minimum at or near a polar configuration.  This was 

shown to be function of the nodal regression rates within the formation.  For an initial 

phase of 90 degrees, the minimum control costs occur at a mid-latitude configuration, an 

apparent result of the secular drift rates in the argument of perigee within the formation.  

At the crossing of the resulting trend lines, it has been shown that for circular, inclined 

reference trajectories, there exist 1-km circular formation configurations that can be 

maintained for control costs on the order of 40-50 m/s/year at an altitude of 400 km.   

Looking to further minimize the necessary control authority, it was shown that 

increasing the altitude of the formation from 400 to 800 km results in a 25% savings in 

annual control costs for both 45 and 90 degree inclinations.  The resulting control 

histories also enhance the separation integrity of the formation.  Further increases in 

altitude should result in similar ΔV savings, where the altitude requirements for an 

operation are solely restricted by the mission objectives and the capabilities of a given 

sensor system. 

Achieving higher image resolutions requires an increase of the aperture size of the 

sensor.  The results of this research show that as the formation radius is increased to 
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expand the synthetic aperture of the formation, the control costs are increased on a linear 

scale.  A tenfold increase in the formation radius results in a tenfold increase in annual 

ΔV costs.  At the same time, formation sizes less than 1-km would result in further 

annual control savings.  The selection of the operational formation radius is once again 

strictly a function of the capabilities of the employed sensor. 

Lastly, it was shown that there are alternate performance index configurations that 

produce further ΔV savings at the expense of the integrity of the circular formation.  

Selection of the weighting constants for the performance index is an engineering trade-off 

between the position requirements of the sensor system and minimizing control costs.  

The savings of the modified performance index are modest, with the example given only 

achieving a 6% reduction in the annual ΔV costs. Expanding the error tolerances on the 

precision of the circular formation even further should produce additional ΔV savings. 

Recommendations for Future Research 

The results of this research portray a promising future for the utilization of 

satellite formations for remote sensing operations.  Expanding upon the findings of this 

research will be vital to vindicating the utility of satellite formation applications.  First 

and foremost, the results of this research are based on the quasi-periodic solutions of 

short-term optimization of the formation dynamics, which allow for only the estimation 

of long-term control requirements.  To verify the accuracy of these results, a periodic 

solution must be found, which would require control of the reference trajectory to match 

the period of the semi-major axis and its equatorial crossing.  This is one of many 
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possible methods of achieving a periodic solution, which would allow for the exact 

determination of long-term fuel requirements for multi-year formation operations. 

This research utilized classical methods for solving for the optimal solution to a 

nonlinear continuous dynamic system, in particular finding a local minimum given an 

arbitrary initial guess.  At no time were the findings of this research verified as a global 

minimum in the design space.  With that said, the discovery of even further control 

savings may be possible with further examination of the design space.  Alternate methods 

of solving the optimization problem for this nonlinear continuous dynamic system may 

also produce or verify a global minimum for this design space. 

The initial conditions derived for this research were chosen specifically to match 

the mean motions of all participants in the formation.  This does not preclude the 

existence of alternate initial conditions which could be better suited for optimizing this 

particular problem.  In addition, the results of this research focused on analyzing initial 

phase angles of 0 and 90 degrees, while assuming that their 180 and 270 degree 

counterparts would result in similar control requirements.  This must be verified to 

validate the necessary control requirements for a 4-satellite cluster.  Also, if it is desired 

to include additional satellites into the formation, the initial conditions derived in 

Appendix D must be used to expand on this research. 

Finally, the creation of a closed-loop controller to produce the open-loop control 

histories found to optimize the formation dynamics must be found.  The development of a 

closed-loop controller is essential to the employment of a satellite cluster for remote 

sensing and surveillance applications.   



 

79 

 
Appendix A.  Equations of Motion 

 
 
Equations of Motion for Reference Trajectory 
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Equations of Motion for Deputy Satellite 
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Appendix B.  Optimization Hamiltonian and Co-State Equations of Motion 
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Appendix C.  Discrete vs. Continuous Control Performance 

 
 

One question that still exists pertains to the performance of the continuous control 

laws against a more realistic control history employed with current spacecraft propulsion 

systems.  A discrete zero-order hold control law employs a constant acceleration 

magnitude over a specified time step, which differs from an impulsive control law which 

employs instantaneous boosts of acceleration at specified instances in time.  It was 

desired to compare continuous control with a similar discrete zero-order hold control law, 

which also served as further validation of the equations of motion. 

When integrating equations of motion in Matlab, error tolerances can be provided 

to enhance the accuracy of the results, and in this case extremely low error tolerances 

were provided to amplify the continuous nature of this system of equations.  Despite this 

fact, the output results are provided to the user in vector form using discrete time steps, 

which are rarely the time steps Matlab utilized during the integration process, especially 

if error tolerances are provided for increased accuracy.  In this case, the resulting control 

input vector u (t) is calculated in Matlab using a relatively small time step, but can only 

be provided as a finite vector to the user.  For this reason, a comparison of the 

performance of a discrete zero-order hold control input against the resulting continuous 

control law should better convey the accuracy and the reliability of the formulated control 

histories. 

The following figures show a comparison of the continuous control law against 

two discrete zero-order hold control laws, one at an approximate 1.1-second hold and the 

second at an approximate 5.5-second hold.   
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Figure 34.  Comparison of Discrete vs. Continuous Control Histories 
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Figure 35.  Zoom-In View of Figure 34 
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Figure 36.  Comparison of Discrete vs. Continuous Satellite Drift 
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Figure 37.  Zoom-In View of Figure 36 
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 This particular example is for a formation altitude of 400 km and an inclination of 

45 degrees.  The initial phase angle of the deputy satellite is zero degrees.  Figure 34 

shows the inertial-X component of the control acceleration vector, with Figure 35 

zooming in on the first 30 seconds to show the discrepancy between the continuous 

control and the two zero-order hold controllers.  Figures 36 and 37 show that there is very 

little deviation in the separations given a zero-order hold controller.  This leads to the 

conclusion that the formation sensitivity to differing control algorithms is relatively 

small.  Obviously, as the hold time is increased, deviation from the desired formation 

dynamics will also increase, evident from the 5.5 second hold shown in Figure 37. 
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Appendix D.  General Derivation of the Initial Conditions Given Any Phase Angle 

 
 
 The derivation of the initial conditions for the deputy satellite can be generalized 

for any initial phase angle.  As before, the relative initial conditions developed by Sabol 

el al. (15:272-273) provide a starting point for the derivation: 

 0 ( / 2)cosdx r θ=  (94)

 0 ( / 2)sindx r n θ= −  (95)

 0 02 /y x n=  (96)

 0 02y nx= −  (97)

 
0 03z x= ±  (98)

 
0 03z x= ±  (99)

The inertial position vector of the deputy satellite can be represented in the relative Hill 

frame as follows: 

 0 0 0ˆ ˆ ˆ( )r R x x y y z z= + + +  (100)

The inertial velocity vector of the deputy satellite can be expressed in the relative Hill 

frame in the following form: 

 
( ) ( )

ˆ ˆ

/

i o

o i
d dr r r r

dt dt
ω= = + ×  (101)

where once again /o iω  is the angular velocity of the relative frame with respect to the 

inertial frame, and can be represented in the relative frame as ˆnz .  Plugging Eqs. (94)-

(100) into Eq. (101) produces the following inertial velocity vector: 
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 3ˆ ˆ ˆsin cos sin
2 2 2
d d dr n r n r nr x nR y zθ θ θ⎛ ⎞= + −⎜ ⎟

⎝ ⎠
∓  (102)

Now that the direction of the inertial velocity vector is found, the magnitude must be 

adjusted to match the energies of the reference trajectory and the deputy satellite.  The 

magnitude is solved for by equating the energies, which produces the following result: 

 
2v

r
με

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 (103)

This magnitude is then multiplied by the unit vector in the inertial velocity direction to 

solve for the initial velocity vector: 

 rv v
r

=  (104)
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Appendix E.  Matlab Optimization Code 

 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%optimize.m 
% 
%This script accepts user-defined initial conditions for the states 
%of two satellites in a circular formation, and then uses continuous 
%dynamic optimization to minimize the control input while maintaining 
%a circular formation.  The equations of motion for both satellites, 
%along with the co-state equations derived from the user-defined 
%performance index, must be provided in the script states_eom.m. 
% 
%Capt Jason Baldwin 
%1 Feb 07 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc; clear all; close all; 
global k1 k2 k3 Rdes optim_on control_on plot_optim output_optim Re mu J2 
global DU DUTU X_bc 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Given the following performance index ... 
% 
% J = k3*(X-X_BC)^2 + integral ( k1{|R-Rref|-Rdes}^2 + k2|u|^2 ) 
% 
%The user must supply the weighting factors k1(sat sep), k2(control), 
%and k3(difference between end state and desired end state) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k1 = 1e3; 
k2 = 1e3; 
k3 = 1e8; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Establish initial guess for lagrange multipliers 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
lam_ini = zeros(6,1); 
  
%For simulation, add capability to turn optimization (control) off 
%0 = control off; 1 = control on 
optim_on = 1; 
control_on = 1; 
output_optim = 1; 
  
%Switch for J2 perturbation -- 0 = off; 1 = on 
J2 = 1; 
  
%%%%%%%%%%%%%%%%%%%%%%% 
%Define Earth constants 
%%%%%%%%%%%%%%%%%%%%%%% 
mu = 398600.4418;       %Earth gravity constant 
Re = 6378.137;          %Earth equatorial radius 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Define constants of motion 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
r = 400;                        %Altitude of circular reference orbit (km) 
n = sqrt(mu/(Re+r)^3);          %Mean motion of reference orbit (rad/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Input desired orbital elements for formation orbit 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
a = Re + r;         %semi-major axis (km) 
e = 0;              %eccentricity 
i = 45;              %inclination (deg) 
Om = 0;             %longitude of ascending node (deg) 
w = 0;              %argument of perigee (deg) 
nu = 0;             %true anomaly (deg) 
phase = 0;         %phase angle of relative orbit (deg) (0 or 90) 
Rdes = 1;           %Desired relative orbit radius (km) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Input desired initial coordinates of deputy satellite in 
%relative frame for phase = 0 deg 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if phase == 0 
    x0 = a + Rdes/2; 
    y0 = 0; 
    z0 = sqrt(3)/2*Rdes; 
    px0 = 0; 
    py0 = sqrt(2*mu/sqrt(a^2+a*Rdes+Rdes^2) - mu/a); 
    pz0 = 0; 
    X_rel_0 = [x0 y0 z0 px0 py0 pz0]'; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Input desired initial coordinates of deputy satellite in 
%relative frame for phase = 90 deg 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if phase == 90 
    x0 = a; 
    px0 = -0.5*n*Rdes; 
    y0 = 2*px0/n; 
    py0 = sqrt(mu/a); 
    z0 = 0; 
    pz0 = -sqrt(3)/2*n*Rdes; 
    %Calculate the unit vector for velocity 
    vhat = [-px0; py0; pz0]/norm([px0; py0; pz0]); 
    %Calculate the necessary magnitude for energy matching 
    K = sqrt(2*mu/sqrt(a^2+Rdes^2) - mu/a); 
    %Calculate initial velocities 
    vvec = K*vhat; 
    px0 = vvec(1); 
    py0 = vvec(2); 
    pz0 = vvec(3); 
    X_rel_0 = [x0 y0 z0 px0 py0 pz0]'; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Convert the orbital elements into earth-centered inertial  
%radius and velocity 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Convert degrees to radians 
i = i*pi/180; 
Om = Om*pi/180; 
w = w*pi/180; 
nu = nu*pi/180; 
  
%Calculate semi-latus rectum and radius magnitude 
p = a*(1-e^2); 
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r_mag = p/(1+e*cos(nu)); 
  
%Calculate radius and velocity vectors in perifocal coordinates 
rad = [r_mag*cos(nu); r_mag*sin(nu); 0]; 
vel = sqrt(mu/p)*[-sin(nu); e+cos(nu); 0]; 
  
%Calculate the rotation matrix from perifocal to inertial 
R11 = cos(Om)*cos(w) - sin(Om)*sin(w)*cos(i); 
R12 = -cos(Om)*sin(w) - sin(Om)*cos(w)*cos(i); 
R13 = sin(Om)*sin(i); 
R21 = sin(Om)*cos(w) + cos(Om)*sin(w)*cos(i); 
R22 = -sin(Om)*sin(w) + cos(Om)*cos(w)*cos(i); 
R23 = -cos(Om)*sin(i); 
R31 = sin(w)*sin(i); 
R32 = cos(w)*sin(i); 
R33 = cos(i); 
  
R_pi = [R11 R12 R13; R21 R22 R23; R31 R32 R33]; 
  
%Calculate the inertial radius and velocity vectors of formation center 
r_chief = R_pi*rad; 
v_chief = R_pi*vel; 
  
%Set the initial state vector of formation center 
Xref_0 = [r_chief' v_chief']'; 
  
%Calculate the state vector of deputy in inertial coordinates 
C_IR = rel_to_inert(Xref_0); 
C = [C_IR zeros(3,3); zeros(3,3) C_IR]; 
X_0 = C*X_rel_0; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Switch everything to canonical units 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
DU = a;                 %Canonical position unit 
TU = sqrt(mu)/a^(3/2);  %Canonical time unit 
DUTU = sqrt(mu/a);      %Canonical velocity unit 
a = 1; 
mu = 1; 
Re = Re/DU; 
Rdes = Rdes/DU; 
Xref_0(1:3) = Xref_0(1:3)/DU; 
Xref_0(4:6) = Xref_0(4:6)/DUTU; 
X_0(1:3) = X_0(1:3)/DU; 
X_0(4:6) = X_0(4:6)/DUTU; 
X_rel_0(1:3) = X_rel_0(1:3)/DU; 
X_rel_0(4:6) = X_rel_0(4:6)/DUTU; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculate the time between consecutive crossings of the argument 
%of apogee.  Also, at t = 1 period, define the reference states at  
%that time to be used in calculating our boundary conditions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
T_2body = 2*pi/sqrt(mu)*a^(3/2); 
T = 1.01*T_2body; 
div = 1e4; 
kill = 0; 
tspan = 0:T/div:T; 
options = odeset('RelTol',1e-13,'AbsTol',1e-13); 
[t,xf] = ode45(@inertialJ2_eom,tspan,Xref_0,options); 
len = length(t); 



 

91 

xref = xf(:,1); 
yref = xf(:,2); 
zref = xf(:,3); 
ref_mag = sqrt(xref.^2+yref.^2+zref.^2); 
for i = len:-1:1 
    if ref_mag(i)-ref_mag(i-1) > 0 
        new_x0 = [xf(i-2,1) xf(i-2,2) xf(i-2,3) ... 
                  xf(i-2,4) xf(i-2,5) xf(i-2,6)]; 
        tspan2 = t(i-2):abs(t(i+2)-t(i-2))/div:t(i+2); 
        [t2,xf2] = ode45(@inertialJ2_eom,tspan2,new_x0,options); 
        len2 = length(t2); 
        xref2 = xf2(:,1); 
        yref2 = xf2(:,2); 
        zref2 = xf2(:,3); 
        ref_mag2 = sqrt(xref2.^2+yref2.^2+zref2.^2); 
        for j = len2:-1:1 
            if ref_mag2(j)-ref_mag2(j-1) > 0 
                new_x0 = [xf2(j-2,1) xf2(j-2,2) xf2(j-2,3) ... 
                         xf2(j-2,4) xf2(j-2,5) xf2(j-2,6)]; 
                tspan3 = t2(j-2):abs(t2(j+2)-t2(j-2))/div:t2(j+2); 
                [t3,xf3] = ode45(@inertialJ2_eom,tspan3,new_x0,options); 
                len3 = length(t3); 
                xref3 = xf3(:,1); 
                yref3 = xf3(:,2); 
                zref3 = xf3(:,3); 
                ref_mag3 = sqrt(xref3.^2+yref3.^2+zref3.^2); 
                for k = len3:-1:1 
                    if ref_mag3(k)-ref_mag3(k-1) > 0 
                        T_period = t3(k); 
                        Xref_bc = xf3(k,1); 
                        Yref_bc = xf3(k,2); 
                        Zref_bc = xf3(k,3); 
                        PXref_bc = xf3(k,4); 
                        PYref_bc = xf3(k,5); 
                        PZref_bc = xf3(k,6); 
                        kill = 1; 
                        break; 
                    end 
                end 
            end 
            if kill == 1 
                break; 
            end 
        end 
    end 
    if kill == 1 
        break; 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculate the final boundary conditions for the deputy satellite 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculate transformation matrix 
Ref_bc = [Xref_bc; Yref_bc; Zref_bc; PXref_bc; PYref_bc; PZref_bc]; 
C_IR = rel_to_inert(Ref_bc); 
R_bc = [C_IR zeros(3,3); zeros(3,3) C_IR]; 
  
%Calculate new initial conditions based on new altitude 
if phase == 0 
    a2 = norm([Xref_bc Yref_bc Zref_bc]); 
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    x0 = a2 + Rdes/2; 
    y0 = 0; 
    z0 = sqrt(3)/2*Rdes; 
    px0 = 0; 
    py0 = sqrt(2*mu/sqrt(a2^2+a2*Rdes+Rdes^2) - mu/a2); 
    pz0 = 0; 
    X_rel_bc = [x0 y0 z0 px0 py0 pz0]'; 
    X_bc = R_bc*X_rel_bc; 
end 
  
if phase == 90 
    a2 = norm([Xref_bc Yref_bc Zref_bc]); 
    n2 = sqrt(mu/(a2)^3); 
    x0 = a2; 
    px0 = -0.5*n2*Rdes; 
    y0 = 2*px0/n2; 
    py0 = sqrt(mu/a2); 
    z0 = 0; 
    pz0 = -sqrt(3)/2*n2*Rdes; 
    %Calculate the unit vector for velocity 
    vhat = [-px0; py0; pz0]/norm([px0; py0; pz0]); 
    %Calculate the necessary magnitude for energy matching 
    K = sqrt(2*mu/sqrt(a2^2+Rdes^2) - mu/a2); 
    %Calculate initial velocities 
    vvec = K*vhat; 
    px0 = vvec(1); 
    py0 = vvec(2); 
    pz0 = vvec(3); 
    X_rel_bc = [x0 y0 z0 px0 py0 pz0]'; 
    X_bc = R_bc*X_rel_bc; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Call two-point boundary value problem function to solve 
%for the initial lagrange multipliers which minimize 
%performance index 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Set the number of time steps and the time span for integration  
tsteps = 1e3; 
Tspan = 0:T_period/tsteps:T_period; 
if optim_on == 1 
    [lambda_0,lambda_f,lambda_bc] = tpbvp(X_0,Xref_0,lam_ini,Tspan); 
end 
  
%Integrate once with converged solution 
x_0 = [Xref_0' X_0' lambda_0']'; 
[t,states] = ode45(@states_eom,Tspan,x_0,options); 
  
%Unpack final results and convert to metric units 
Xref = states(:,1)*DU; 
Yref = states(:,2)*DU; 
Zref = states(:,3)*DU; 
PXref = states(:,4)*DUTU; 
PYref = states(:,5)*DUTU; 
PZref = states(:,6)*DUTU; 
  
X = states(:,7)*DU; 
Y = states(:,8)*DU; 
Z = states(:,9)*DU; 
PX = states(:,10)*DUTU; 
PY = states(:,11)*DUTU; 
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PZ = states(:,12)*DUTU; 
  
lamX = states(:,13)*DUTU^2/DU; 
lamY = states(:,14)*DUTU^2/DU; 
lamZ = states(:,15)*DUTU^2/DU; 
lamPX = states(:,16)*DUTU^2/DU; 
lamPY = states(:,17)*DUTU^2/DU; 
lamPZ = states(:,18)*DUTU^2/DU; 
  
t = t/TU; 
a = a*DU; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                    Plot final results                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Plotting Code Omitted 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [lambda_initial,lambda_final,lam_f] = tpbvp(x,xref,lam_0,T) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%tpbvp.m 
% 
%This script solves the two-point boundary value problem for 
%the minimum control input to maintain circular formation for 
%two satellites.  This script uses the "shooting" method to  
%solve the two-point boundary value problem. 
% 
%1Lt Jason Baldwin 
%27 Sep 06 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global k1 k2 k3 Rdes plot_optim output_optim mu X_bc 
options = odeset('RelTol',1e-13,'AbsTol',1e-13); 
itr = 0; 
maxitr = 1e5; 
e_tol = 5e-4; 
eps = 3e-6; 
  
%Display column headings for optimization output 
if output_optim == 1 
    fprintf(1, '\r\r%65s', 'OPTIMIZATION RESULTS') 
    fprintf(1, '\r\r%23s %15s %15s %15s %15s %20s', ... 
            'Final State','Satellite','Control','Cost Function',... 
            'Jacobian','Final Boundary') 
    fprintf(1, '\r%7s %15s %15s %15s %15s %15s %20s', ... 
            'Iter','Difference','Separation','Magnitude','J',... 
            'Min Singl Val','Conditions Error') 
    fprintf(1, '\r%7s %15s %15s %15s %15s %15s %20s', ... 
            '----','-----------','----------','---------',... 
            '-------------','-------------','----------------') 
end 
  
while itr < maxitr 
     
    %Propagate EOM to calculate the states and co-states 
    x_0 = [xref' x' lam_0']'; 
    [t,states] = ode45(@states_eom,T,x_0,options); 
    m = length(t); 
     
    %Unpack the states for ease of calculations 
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    Xref = states(:,1); 
    Yref = states(:,2); 
    Zref = states(:,3); 
    PXref = states(:,4); 
    PYref = states(:,5); 
    PZref = states(:,6); 
         
    X = states(:,7); 
    Y = states(:,8); 
    Z = states(:,9); 
    PX = states(:,10); 
    PY = states(:,11); 
    PZ = states(:,12); 
         
    lamX = states(:,13); 
    lamY = states(:,14); 
    lamZ = states(:,15); 
    lamPX = states(:,16); 
    lamPY = states(:,17); 
    lamPZ = states(:,18); 
     
    %Calculate the final conditions on the Lagrange Multipliers (LMs) 
    %Difference between final states and desired final states 
    lam_xf = 2*(X(m)-X_bc(1)); 
    lam_yf = 2*(Y(m)-X_bc(2)); 
    lam_zf = 2*(Z(m)-X_bc(3)); 
    lam_pxf = 2*(PX(m)-X_bc(4)); 
    lam_pyf = 2*(PY(m)-X_bc(5)); 
    lam_pzf = 2*(PZ(m)-X_bc(6)); 
    lam_f = k3*[lam_xf lam_yf lam_zf lam_pxf lam_pyf lam_pzf]'; 
     
    %Calculate errors in final LMs 
    cur_lms = [lamX(m) lamY(m) lamZ(m) lamPX(m) lamPY(m) lamPZ(m)]'; 
    cur_error = cur_lms - lam_f; 
         
    %Calculate the transition matrix (Jacobian) 
    for j=1:6 
        temp = lam_0(j); 
        delta_lam = eps*abs(temp); 
        if delta_lam == 0 
            delta_lam = eps; 
        end 
        lam_0(j) = temp + delta_lam; 
        x_0 = [xref' x' lam_0']'; 
        [t,states] = ode45(@states_eom,T,x_0,options); 
        new_lms = [states(m,13) states(m,14) states(m,15)... 
                   states(m,16) states(m,17) states(m,18)]'; 
        for i=1:6 
            Jacb(i,j) = (new_lms(i) - cur_lms(i))/delta_lam; 
        end 
        lam_0(j) = temp; 
    end 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Output the optimization results 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if output_optim == 1 
        %Calculate the final state difference at final time 
        dx = (X(m)-X_bc(1))^2; 
        dy = (Y(m)-X_bc(2))^2; 
        dz = (Z(m)-X_bc(3))^2; 



 

95 

        dpx = (PX(m)-X_bc(4))^2; 
        dpy = (PY(m)-X_bc(5))^2; 
        dpz = (PZ(m)-X_bc(6))^2; 
        delta_state = k3*(dx+dy+dz+dpx+dpy+dpz); 
         
        %Calculate the satellite separation and control magnitude 
        delta_X = (X - Xref); 
        delta_Y = (Y - Yref); 
        delta_Z = (Z - Zref); 
        ux = -lamPX/(2*k2); 
        uy = -lamPY/(2*k2); 
        uz = -lamPZ/(2*k2); 
        for i=1:length(t) 
            delta_r(i) = (norm([delta_X(i) delta_Y(i) delta_Z(i)]) - Rdes)^2; 
            u_mag(i) = norm([ux(i) uy(i) uz(i)])^2; 
        end 
        delta_pos = k1*trapz(t,delta_r); 
        u = k2*trapz(t,u_mag); 
         
        %Output the results 
        fprintf(1, '\r%7.0f %15.5e %15.5e %15.5e %15.5e %15.5e %20.5e', ... 
                itr, delta_state, delta_pos, u, delta_state+delta_pos+u, ... 
                max(svd(Jacb)), norm(cur_error)) 
    end 
     
    %Compare errors with tolerance and break if within tolerance 
    if norm(cur_error) < e_tol 
        lambda_initial = lam_0; 
        lambda_final = cur_lms; 
        fprintf(1,'\r\rThe solution converged in %3d iterations.\r\r',itr) 
        break; 
    end 
     
    %Choose change in final LMs that drives LMs to desired boundary 
    %condition 
    delta_mu = -eps*(cur_lms - lam_f); 
     
    %Calculate the change in the initial LMs using Jacobian 
    delta_lam_0 = inv(Jacb)*delta_mu; 
     
    %Calculate the new initial guess for the LMs 
    lam_0 = lam_0 + delta_lam_0; 
     
    %Increase iteration count     
    itr=itr+1; 
end 
  
if itr == maxitr 
    fprintf(1,'\r\rThe maximum number of iterations were exceeded.\r\r') 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [xdot] = states_eom(t,state) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is called by ode45 to propagate the states of 
%a satellite formation to include the reference satellite, the 
%deputy satellite, and the lagrange multipliers determined by 
%the specified performance index 
% 
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%1Lt Jason Baldwin 
%27 Sep 06 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
global k1 k2 Rdes optim_on control_on Re mu J2 
  
%Unpack the state vector 
Xref = state(1); 
Yref = state(2); 
Zref = state(3); 
PXref = state(4); 
PYref = state(5); 
PZref = state(6); 
  
X = state(7); 
Y = state(8); 
Z = state(9); 
PX = state(10); 
PY = state(11); 
PZ = state(12); 
  
lamX = state(13); 
lamY = state(14); 
lamZ = state(15); 
lamPX = state(16); 
lamPY = state(17); 
lamPZ = state(18); 
  
if optim_on == 0 && control_on == 0 
    lamX = 0; 
    lamY = 0; 
    lamZ = 0; 
    lamPX = 0; 
    lamPY = 0; 
    lamPZ = 0; 
end 
  
%Set the necessary Earth constants 
if J2 == 0              %J2 perturbation constant 
    J_2 = 0;             
else 
    J_2 = 0.00108263; 
end 
  
%Calculate the inertial position derivatives of reference satellite 
xdot(1) = PXref; 
xdot(2) = PYref; 
xdot(3) = PZref; 
  
%Calculate the inertial velocity derivatives of reference satellite 
xdot(4) = 15*mu*J_2*Re^2*Xref*Zref^2/(2*(Xref^2+Yref^2+Zref^2)^(7/2))... 
          - 3*mu*J_2*Re^2*Xref/(2*(Xref^2+Yref^2+Zref^2)^(5/2))... 
          - mu*Xref/((Xref^2+Yref^2+Zref^2)^(3/2)); 
xdot(5) = 15*mu*J_2*Re^2*Yref*Zref^2/(2*(Xref^2+Yref^2+Zref^2)^(7/2))... 
          - 3*mu*J_2*Re^2*Yref/(2*(Xref^2+Yref^2+Zref^2)^(5/2))... 
          - mu*Yref/((Xref^2+Yref^2+Zref^2)^(3/2)); 
xdot(6) = 15*mu*J_2*Re^2*Zref^3/(2*(Xref^2+Yref^2+Zref^2)^(7/2))... 
          - 9*mu*J_2*Re^2*Zref/(2*(Xref^2+Yref^2+Zref^2)^(5/2))... 
          - mu*Zref/((Xref^2+Yref^2+Zref^2)^(3/2)); 
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%Calculate the inertial position derivatives of deputy satellite 
xdot(7) = PX; 
xdot(8) = PY; 
xdot(9) = PZ; 
  
%Calculate the inertial velocity derivatives of deputy satellite 
xdot(10) = 15*mu*J_2*Re^2*X*Z^2/(2*(X^2+Y^2+Z^2)^(7/2))... 
          - 3*mu*J_2*Re^2*X/(2*(X^2+Y^2+Z^2)^(5/2))... 
          - mu*X/((X^2+Y^2+Z^2)^(3/2))... 
          - lamPX/(2*k2); 
xdot(11) = 15*mu*J_2*Re^2*Y*Z^2/(2*(X^2+Y^2+Z^2)^(7/2))... 
          - 3*mu*J_2*Re^2*Y/(2*(X^2+Y^2+Z^2)^(5/2))... 
          - mu*Y/((X^2+Y^2+Z^2)^(3/2))... 
          - lamPY/(2*k2); 
xdot(12) = 15*mu*J_2*Re^2*Z^3/(2*(X^2+Y^2+Z^2)^(7/2))... 
          - 9*mu*J_2*Re^2*Z/(2*(X^2+Y^2+Z^2)^(5/2))... 
          - mu*Z/((X^2+Y^2+Z^2)^(3/2))... 
          - lamPZ/(2*k2); 
  
%Calculative the time derivatives of the lagrange multipliers 
xdot(13) = -2*k1*(X-Xref)*(sqrt((X-Xref)^2+(Y-Yref)^2+(Z-Zref)^2)-Rdes)/... 
                sqrt((X-Xref)^2+(Y-Yref)^2+(Z-Zref)^2)... 
            - lamPX*(3*X^2*mu/((X^2+Y^2+Z^2)^(5/2))... 
                - mu/((X^2+Y^2+Z^2)^(3/2))... 
                - 105*X^2*Z^2*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(9/2))... 
                + 15*X^2*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(7/2))... 
                + 15*Z^2*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(7/2))... 
                - 3*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(5/2)))... 
            - lamPY*(3*X*Y*mu/((X^2+Y^2+Z^2)^(5/2))... 
                - 105*X*Y*Z^2*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(9/2))... 
                + 15*X*Y*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(7/2)))... 
            - lamPZ*(3*X*Z*mu/((X^2+Y^2+Z^2)^(5/2))... 
                - 105*X*Z^3*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(9/2))... 
                + 45*X*Z*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(7/2))); 
             
xdot(14) = -2*k1*(Y-Yref)*(sqrt((X-Xref)^2+(Y-Yref)^2+(Z-Zref)^2)-Rdes)/... 
                sqrt((X-Xref)^2+(Y-Yref)^2+(Z-Zref)^2)... 
            - lamPY*(3*Y^2*mu/((X^2+Y^2+Z^2)^(5/2))... 
                - mu/((X^2+Y^2+Z^2)^(3/2))... 
                - 105*Y^2*Z^2*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(9/2))... 
                + 15*Y^2*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(7/2))... 
                + 15*Z^2*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(7/2))... 
                - 3*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(5/2)))... 
            - lamPX*(3*X*Y*mu/((X^2+Y^2+Z^2)^(5/2))... 
                - 105*X*Y*Z^2*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(9/2))... 
                + 15*X*Y*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(7/2)))... 
            - lamPZ*(3*Y*Z*mu/((X^2+Y^2+Z^2)^(5/2))... 
                - 105*Y*Z^3*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(9/2))... 
                + 45*Y*Z*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(7/2))); 
  
xdot(15) = -2*k1*(Z-Zref)*(sqrt((X-Xref)^2+(Y-Yref)^2+(Z-Zref)^2)-Rdes)/... 
                sqrt((X-Xref)^2+(Y-Yref)^2+(Z-Zref)^2)... 
            - lamPZ*(3*Z^2*mu/((X^2+Y^2+Z^2)^(5/2))... 
                - mu/((X^2+Y^2+Z^2)^(3/2))... 
                - 105*Z^4*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(9/2))... 
                + 45*Z^2*Re^2*mu*J_2/((X^2+Y^2+Z^2)^(7/2))... 
                - 9*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(5/2)))... 
            - lamPX*(3*X*Z*mu/((X^2+Y^2+Z^2)^(5/2))... 
                - 105*X*Z^3*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(9/2))... 
                + 45*X*Z*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(7/2)))... 
            - lamPY*(3*Y*Z*mu/((X^2+Y^2+Z^2)^(5/2))... 
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                - 105*Y*Z^3*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(9/2))... 
                + 45*Y*Z*Re^2*mu*J_2/(2*(X^2+Y^2+Z^2)^(7/2))); 
             
xdot(16) = -lamX; 
xdot(17) = -lamY; 
xdot(18) = -lamZ; 
  
xdot = xdot'; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [C] = rel_to_inert(inertial_vec) 
%This function takes as input a position/velocity (6x1) vector of a 
%reference trajectory in inertial coordinates and calcuates the 
%transformation matrix (C) for a relative-to-inertial transformation. 
%Since the transformation matrix is orthonormal, the inertial-to-relative 
%transformation is just the transpose of C.  This transformation matrix 
%is valid for both elliptical and circular motion of the reference 
%trajectory. 
  
%Unpack the inertial vector 
X = inertial_vec(1); 
Y = inertial_vec(2); 
Z = inertial_vec(3); 
PX = inertial_vec(4); 
PY = inertial_vec(5); 
PZ = inertial_vec(6); 
  
rvec = [X; Y; Z]; 
rdotvec = [PX; PY; PZ]; 
  
%Elliptical/Circular reference motion transformation 
x_hat = [X/norm(rvec); Y/norm(rvec); Z/norm(rvec)]; 
y_hat_p = [PX/norm(rdotvec); PY/norm(rdotvec); ... 
           PZ/norm(rdotvec)]; 
z_hat = cross(x_hat,y_hat_p); 
y_hat = cross(z_hat,x_hat); 
  
C = [x_hat y_hat z_hat]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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